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Activity recognition using video data is widely adopted for elder care, monitoring for safety and security, and home automation.
Unfortunately, using video data as the basis for activity recognition can be brittle, since models trained on video are often
not robust to certain environmental changes, such as camera angle and lighting changes. There has been a proliferation
of network-connected devices in home environments. Interactions with these smart devices are associated with network
activity, making network data a potential source for recognizing these device interactions. This paper advocates for the
synthesis of video and network data for robust interaction recognition in connected environments. We consider machine
learning-based approaches for activity recognition, where each labeled activity is associated with both a video capture and
an accompanying network traffic trace. We develop a simple but effective framework AMIR (Active Multimodal Interaction
Recognition)1 that trains independent models for video and network activity recognition respectively, and subsequently
combines the predictions from these models using a meta-learning framework. Whether in lab or at home, this approach
reduces the amount of “paired” demonstrations needed to perform accurate activity recognition, where both network and
video data are collected simultaneously. Specifically, the method we have developed requires up to 70.83% fewer samples to
achieve 85% F1 score than random data collection, and improves accuracy by 17.76% given the same number of samples.
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1 INTRODUCTION
Healthcare researchers have long understood the value of in-home activity recognition [56]. Understanding
the patterns in a person’s daily living is essential to encouraging healthy diets, detecting cognitive or physical
decline, and evaluating medical compliance. While prior work has considered a number of purpose-built sensors
such as vibration and motion sensors/IMUs [21, 36, 40, 46, 53, 58, 64], there has been a recent convergence
towards using cameras with general-purpose computer vision algorithms [13, 25, 27, 28, 41]. Cameras have
several deployment advantages, as they can be used in any environment without specialized hardware and can
detect both simple and complex activities with a single data collection interface. A well-placed camera directly
captures the information needed to classify an in-home activity—as opposed to leveraging a potentially tenuous
side-channel 2. Furthermore, the availability of pre-trained computer vision models has democratized automatic
visual perception making camera-based activity recognition more of a reality.

Unfortunately, it is well-known that the deep learningmodels commonly used in computer vision are susceptible
to statistical failures where a training dataset may not have fully covered the “long tail” of activity variations
that can be seen during deployment [32]. Correcting for such issues may require a significant amount of labeled
demonstrations that are cumbersome to obtain. There are further failure modes that are simply fundamental
to computer vision—occlusions, obstructions, and bad lighting—if one can’t see the activity, one can’t classify
it. Thus, many of the advantages of camera-based activity recognition are only realized in controlled settings,
where the camera’s field of view can be kept clear and unobstructed, and the human subjects are instructed to
perform activities in a visually consistent way.
As a consequence, we find that, unfortunately, purely relying on computer vision for activity recognition

results in brittle software in realistic environments. This paper explores how to augment visual activity recognition
with alternate data without sacrificing its generality. To this end, many in-home activities involve interactions with
electronic devices, which are increasingly connected to a network. These connected devices shed off network
traffic as subjects interact with them. A natural starting point is additionally using network traffic analysis for
detecting device interactions [1, 6], which has primarily been studied in the privacy literature. Network as a
data source to detect device interactions complements computer vision and potentially adds key redundancy
that covers for visual failure modes (i.e., there might be network traffic evidence of an interaction even if it
is not visually clear). This paper advocates for the marriage of video and network data for a robust detection of
device interactions. Augmenting with network data has a few specific advantages since: (1) capturing network
traffic does not require specialized sensing hardware and can be deployed in any home environment, and (2) it is
agnostic to the physical arrangement of activity recognition objects and subjects [1, 6], which allows for a high
level of generality in deployment.

We note that the device interactions are only a subset of all in-home user activities. However, the information
obtained from these device interactions is useful, especially in the context of healthcare. For instance, excessive
interactions with a smart fridge in a home are indicative of health issues. For simplicity, we use the terms device
interaction recognition and activity recognition interchangeably with an understanding that the scope of the
considered activities is limited to device interactions with associated network traffic. We consider machine
learning-based approaches for activity recognition where labeled activities are associated with both a video
capture and a network trace in a connected environment (i.e., smart home, and more broadly speaking smart
building, smart factory, and etc.). From an ML perspective, these data sources complement each other well,
without sacrificing generality, where one captures the physical consequences of interaction and one captures the
digital effects of those interactions.

This combination is not without technical challenges, since training models requires fusing information from
two very different data sources. We propose a simple but effective framework called AMIR (Active Multimodal

2There are certainly privacy implications of using sources such as audio and video; we include a discussion of privacy in Section 6.
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Interaction Recognition) that trains independent models for video and network activity recognition respectively,
and then combines the predictions using a meta-learning framework. This approach crucially allows one to
leverage specialized models for each data source separately, where even the training data can be collected
independently. These models are combined with a small number of “paired” demonstrations where both network
traffic and video are collected synchronously. A technical contribution of our work is understanding how to
efficiently collect such data to train such models—a problem we call active multimodal interaction recognition.
To solve this problem, we propose a heuristic that crucially reduces the amount of paired demonstrations needed.
Using this method, it requires up to 70.83% fewer samples to achieve 85% F1 score than random data collection,
and improves accuracy by 17.76% given the same number of samples.
Our exploration of using both network and video data for activity recognition yields the following findings

that we believe can help the community build next generation of in-home activity recognition systems:

• Network traffic is a surprisingly robust data source of activity recognition even with general-purpose flow
features, i.e., they don’t have to be changed across tasks or environments, across a variety of internet-capable
home appliances [63].

• Individually, the video-based model and the network-based model achieve comparable accuracy, but
together they are significantly more accurate than either individual source.

• The best way to combine these sources together is a meta-learning algorithm that efficiently combines
independently trained video and network models. This strategy minimizes the number of “paired” examples
needed, which are often more expensive to collect.

• An uncertainty-minimization heuristic can actively choose what training data to collect to further reduce
labeling costs.

2 MOTIVATION AND RELATED WORK
In this section, we motivate this study with key prior work.

2.1 Video/Network Activity Recognition
Visual solutions are appealing because of their generality. First, let’s consider the alternative, e.g., using an
accelerometer to detect whether a refrigerator door is opened in a smart kitchen. This sensor will have to be
specifically placed by an expert to recognize this activity, any activity recognition task must be calibrated to the
specific sensor values, and any classification of activities beyond opening the refrigerator door will be indirect at
best. On the other hand, a single camera capturing video is far more flexible. Cameras are widely available, do
not require expert installation, and can detect a wide variety of device interactions. However, the use of cameras
shifts the sensing burden from hardware design to software since classifying such real-world activities requires
advanced computer vision algorithms. We briefly survey the state-of-the-art in this space.
Activity recognition in video has been studied from both a geometric perspective [17, 18, 45, 51, 62] and an

end-to-end neural network perspective [13, 25, 27, 28, 41]. In this work, we use a pre-trained SlowFast [28] neural
network architecture to featurize our data, and train a separate output layer to make predictions for our classes.
Due to the nature of video data, video-based models are infamously sensitive [31, 61]. Researchers have developed
architectures that are robust to such issues, but such work is not yet fully mature [38].

Adding additional modalities can improve the performance of video-based models, but existing video activity
recognition datasets are mostly single-modality. For example, Kinetics [19, 20, 35, 52], AVA [37] and Activi-
tyNet [26] were collected from various environments annotated with hundreds of classes. Some existing work
fuses audio-visual data for human action recognition [9, 50]. Others have considered data modalities including
inertial measurement units (IMUs) [46, 53]. There are datasets with such sensor data including the CMU Multi-
Modal Activity Database (CMU-MMAC) [23] that records coarse-grained human activities in a kitchen with
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multi-modal data sources, including video, audio, motion capture, and multiple sensors. Similar datasets include
TUM Kitchen [57] and 50 Salads [54]. These multi-modal scenarios require complex setups of motion capture
devices and sensors, such as inertial measurement units (IMUs). To the best of our knowledge, no existing work
combines video and network traffic together as two modalities for activity recognition. We argue that although
these multimodal approaches tried to include data sources from different modalities, they are only accessible
from a lab setting. It is almost impossible to democratize these sensors in real-world kitchens. However, our
approach is applicable to every kitchen with internet-connected devices.
Activity recognition using network traffic has been explored in number of prior works [7, 8, 49, 60]. These

works show promising, albeit limited, results for activity recognition using encrypted network data. The primary
focus of these works, however, have been on the privacy implications of being able to detect in-home activities
purely from network traffic. Due to the ubiquity of networked appliances, we argue that network traffic can
be considered a first-class citizen along with the video for in-home activity recognition. Increasingly, there are
general-purpose models and techniques for featurizing network traffic [11]. We leverage general-purpose network
features for activity recognition [63].

2.2 Other Activity Recognition Modalities
There are numerous sensing modalities that have been applied in this context. However, we argue that there
is a generality to video and network data not seen in these purpose-designed systems. Table 1 compares and
contrasts the different approaches. Video and network traffic are two accurate sources, which can be collected
from universal interfaces, such as cameras and routers. While the video is susceptible to environment changes, it
generalizes across appliance types for activity recognition. Network traffic, on the other hand, is tied to devices,
but it is environment-independent. These complementary characteristics are unseen in the activity recognition
modalities below, thus making them a good couple.

2.2.1 Sensor-based Activity Recognition. Recently, there has been a rise in sensing technology along with the
popularity of “smart home” experiences [36]. Researchers have developed different methods to recognize human
activities from sensor data [21, 58]. Deep learning has also been used for human activity recognition with wearable
sensors [40, 64]. While being accurate, these sensing components often require special hardware [36, 64] and can
be costly to deploy correctly.

2.2.2 Audio-based Activity Recognition. Since most human activities of daily living (ADL) produce characteristic
sounds, it is possible to do activity recognition purely based on audio data [39, 55]. However, audio-based
approaches are easy to be affected by ambient noises [39] and are highly dependent on the material of devices.

2.2.3 Powerline-based Activity Recognition. Researchers have developed tools to measure the power consumption
of each device [12, 15, 24]. With these measurements, it is possible to identify appliances based on distributed
load metering data [47]. Although universal, this side-channel information is hard to acquire [12, 15, 24, 47].

2.2.4 Wireless-based Activity Recognition. Researchers have used RF signals for various tasks, including motion
tracking [3], multi-person localization [2], breathing and heart rate monitoring [4], and even emotion recogni-
tion [65]. Human activity recognition is also a popular task for wireless signals [42, 59]. An advantage of RF-based
methods over sensor-based counterparts is that users no longer need to carry any physical device. However,
these methods are largely impacted by the indoor environment. Due to multipath effects, many works in this line
need prior knowledge like floor plans, home layouts [2, 42] to achieve such goals, which makes the accuracy in
real environment far from ideal.
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Table 1. Activity recognition sources.

Universal
interface

Environment
dependence

Device
dependence Accuracy Literature

Video ! ! ! [13, 25, 27, 28, 41]
Network traffic ! ! ! [7, 8, 49, 60]
Vibration sensors ! ! [21, 40, 58, 64]
Audio ! ! ! [39, 55]
Powerline ! ! [12, 15, 24, 47]
Wireless ! ! [4, 42, 59, 65]

2.3 Multimodal Learning
The world is naturally multimodal, and we have data generated from diverse sources. Multimodal learning builds
machine learning models that integrate data sources from multiple modalities, so we can take advantage of
complementary information from different sources [10]. There are two main categories of multimodal learning:
early fusion and late fusion. Early fusion combines multiple modalities at the feature level and conducts most
computations after the combination. Late fusion, on the other hand, encourages the use of separate models for
different modalities and applies a light model after the combination.
The traditional machine learning literature focuses on the accuracy and generalization considerations of

different types of combinations. Our work studies the labeling cost of different combining different modalities.
In particular, we consider a setting where there is a mix of individually (where only one modality is captured)
and paired labeled data (where both modalities are captured simultaneously). We also consider algorithms for
actively choosing which classes to demonstrate in the paired setting.
Multimodal learning is a novel problem setting related to two sub-areas of machine learning called Active

Learning [48] and Semi-Supervised Learning [66]. In the former, a learning algorithm can interactively query a
user to label new data points with the desired outputs. In contrast, we consider a scenario where the data points
themselves have to be collected. The key axis for optimizing is choosing which classes of data points to collect in
the paired setting. This problem is also related to semi-supervised learning which combines a small amount of
labeled data with a large amount of unlabeled data. In contrast, we explore combining a small amount of paired
labeling with a large amount of individually labeled data.

3 ACTIVE MULTIMODAL INTERACTION RECOGNITION (AMIR)
In this section, we describe the core technical contribution of this work, namely, an algorithm for multi-modal
interaction recognition problem using network and video data.

3.1 Problem Statement
We consider an environment with a set of networked appliances. A human subject in this environment can
interact with each of the devices in one or more “activities”. Let Y be a set of such activities that we wish to
classify, including an “idle” (no activity) class. From this environment, we collect two time-aligned streams of
data 𝑥𝑣𝑖𝑑𝑒𝑜 and 𝑥𝑛𝑒𝑡𝑤𝑜𝑟𝑘 . The multi-modal activity recognition problem is to produce a model that determines
which activity, if any, is currently occurring:

𝑦 ≈ 𝑓 (𝑥𝑣𝑖𝑑𝑒𝑜 , 𝑥𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ), 𝑦 ∈ Y (1)
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Table 2. Table of notation.

Y a set of activities we wish to classify
𝑦 an activity label (𝑦 ∈ Y)
𝑥𝑠𝑜𝑢𝑟𝑐𝑒 a time-aligned data stream of 𝑠𝑜𝑢𝑟𝑐𝑒
Y ground truths of a labeled dataset
X𝑠𝑜𝑢𝑟𝑐𝑒 the entire training data from a labeled dataset of 𝑠𝑜𝑢𝑟𝑐𝑒
𝑓 , 𝑔 a model that predicts activity labels based on data streams
𝜃𝑣, 𝜃𝑛 model parameters for video and network models
ℎ𝑚 a meta-learning model with parameters𝑚 learned from data
𝑊 weights for each class
𝑈 uncertainty, defined by the difference between 100% confidence

and the most confident prediction

There are many ways to realize equation 1, and we describe some of the key metrics that we will consider in
this work. First, we will primarily focus on supervised machine learning approaches to constructing 𝑓 , namely,
where labeled training data is used to fit a model. That said, the notion of labeled training data is a little subtle in
multi-modal classification.
Demonstrations. A demonstration is a labeled instance of a human performing one of the activities in Y.
Paired Labeling. A paired labeling is a demonstration where both time-aligned streams of data (𝑥𝑣𝑖𝑑𝑒𝑜 and
𝑥𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ) are collected and the demonstration is associated with a label 𝑦 ∈ Y.
Individual Labeling. A individual labeling is a demonstration where one only one of the data streams, either
𝑥𝑣𝑖𝑑𝑒𝑜 or 𝑥𝑛𝑒𝑡𝑤𝑜𝑟𝑘 , is associated with a label 𝑦.

These two types of labelings are interesting to consider because they have different costs. Individual labeling
for network traffic can be collected offline in a lab environment for each device. Similarly, for many devices, we
notice that there is a significant lag relationship between an interaction and its induced network traffic, whereas
video data collection induces signal in real time. Thus, even for video data, individual labeling is significantly
faster to collect. In contrast, paired labelings are more costly because they require both streams of data to be
time-aligned and synchronized. However, during inference, the model will have to consider time-aligned data
streams. So, we want to use individually labeled data as much as possible while not sacrificing too much accuracy
over fully paired data collection.
Active Multi-Modal Activity Recognition Problem Statement. Let (X𝑣𝑖𝑑𝑒𝑜 ,Y) be an individually labeled
training set of video demonstrations, and (X𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ,Y) an individually labeled training set of network demon-
strations. Given these individually labeled demonstrations, we collect a small set of demonstrations with paired
labelings (X𝑏𝑜𝑡ℎ,Y) to improve the accuracy of the model. Our algorithmic objective is to determine which
classes to demonstrate to improve the accuracy of the model as quickly as possible ,i.e., with as few paired
demonstrations.

3.2 Meta-Learning For Multi-Modal Models
The core challenge is designing a model that can train on a mix of individually labeled data and paired labeled
data. To do this, we leverage meta-learning. Meta-learning refers to machine learning algorithms that learn from
the output of other machine learning algorithms.

Let’s suppose that we have trained two models on the individually labeled data. We can think of a model as a
parametrized conditional probability distribution, i.e., a probability over the activity classes given a particular set
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of features:

𝑓𝜃𝑣 (𝑥𝑣𝑖𝑑𝑒𝑜 ) = 𝑃𝑟 [Y|X𝑣𝑖𝑑𝑒𝑜 ] 𝑔𝜃𝑛 (𝑥𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ) = 𝑃𝑟 [Y|X𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ]

𝑓𝜃𝑣 and 𝑔𝜃𝑛 can represent any type of a parametric model, e.g., SVM, Logistic Regression, Random Forest or a
Neural Network, where 𝜃𝑣 and 𝜃𝑛 describe the model parameters.

A meta-learning model is a parametrized functionℎ that combines 𝑓𝜃𝑣 and𝑔𝜃𝑛 . This is a function of the predicted
class probabilities. We can think of the meta-learning model as a function of two vectors of class probabilities, it
defines a consensus scheme between these two predictions:

𝑦 = ℎ𝑚 (𝑓𝜃𝑣 (𝑥𝑣𝑖𝑑𝑒𝑜 ), 𝑔𝜃𝑛 (𝑥𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ))

The parameters of the meta-learning model 𝑚 are learned from data, i.e., it learns how to integrate those
probabilities.

To train such a meta-learning model, one needs to first train 𝑓𝜃𝑣 and 𝑔𝜃𝑛 on their respective individually labeled
datasets. Then given finalized models for 𝑓𝜃𝑣 and 𝑔𝜃𝑛 , the meta-learning model ℎ𝑚 is trained with a smaller amount
of paired examples. One constructs a meta-learning training dataset (𝑓𝜃𝑣 (X𝑣𝑖𝑑𝑒𝑜 ), 𝑔𝜃𝑛 (X𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ),Y) where the
features are the prediction vectors from 𝑓 and 𝑔, and the labels are the original labels. The model ℎ is then trained
to learn how to combine those prediction vectors. This scheme allows us to train models on a mix of individually
and paired labeled data.

To summarize, meta-learning models have a number of crucial advantages over simply combining the features
X𝑣𝑖𝑑𝑒𝑜 and X𝑛𝑒𝑡𝑤𝑜𝑟𝑘 together (which we call a monolithic architecture):

• 𝑓 and 𝑔 can be designed and implemented in very different ways and potentially using different software
libraries. A monolithic architecture would require that both data sources are converted to a common feature
format.

• 𝑓 and 𝑔 can be trained on a mix of individually labeled and paired labeled data. A monolithic architecture
would require all training data to be paired.

• The approach can be easily scaled to multiple different data sources.

3.3 Active Collection of Paired Examples
Next, we consider techniques for selecting which paired examples to collect. We assume that we already have
trained individual models 𝑓 and 𝑔 for video and network data respectively. The goal is to derive a distribution of
weights𝑊 (𝑓 , 𝑔) for each class to guide the active paired example collections, a step before the actual training
of the meta-learner. The paired data for each class is then collected in proportion to the derived weights. For
instance, if the weights for a 3-class classifier are [0.5, 0.3, 0.2] and training data is collected in batches of 10,
then during the first batch, we collect [5, 3, 2] samples from the corresponding classes. This process then can be
repeated for the next 10-sample batch, and so forth. The question then is how to derive the weights. A naive
method is to use equal weights, i.e., to sample equally from all classes. However, it can lead to redundant data
collection. We design our approach based on one insight: paired examples are most valuable in classes where
neither the 𝑓 or 𝑔 model is very confident in its prediction, i.e., the prediction probability has the highest entropy.
We assume that during individual model training, there’s a cross-validation process. Each sample from a

cross-fold validation set serves as a probe. We derive a set of probability vectors, {𝑃𝑓 (𝑥𝑖𝑣𝑖𝑑𝑒𝑜 )} and {𝑃𝑔 (𝑥 𝑗

𝑛𝑒𝑡𝑤𝑜𝑟𝑘
)}

for each video sample 𝑥𝑖
𝑣𝑖𝑑𝑒𝑜

and network sample 𝑥𝑖
𝑛𝑒𝑡𝑤𝑜𝑟𝑘

in the cross-validation set, respectively. Here, 𝑃𝑓 (𝑥𝑖𝑣𝑖𝑑𝑒𝑜 )
is the probability vector output by 𝑓 while predicting on 𝑥𝑖

𝑣𝑖𝑑𝑒𝑜
, indicating the prediction probability of each

class. It should be noted that every prediction probability in 𝑃𝑓 (𝑥𝑖𝑣𝑖𝑑𝑒𝑜 ) or 𝑃𝑔 (𝑥
𝑗

𝑛𝑒𝑡𝑤𝑜𝑟𝑘
) is between 0 and 1 and

the probability across classes add to 1.
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Based on these probability vectors, we compute an uncertainty score for each sample.We compute the difference
between 100% confidence and the most confident prediction, referred to as least confidence, as the uncertainty:

𝑈𝑓 (𝑥𝑖𝑣𝑖𝑑𝑒𝑜 ) = 1 −max 𝑃𝑓 (𝑥𝑖𝑣𝑖𝑑𝑒𝑜 )), 𝑈𝑔 (𝑥 𝑗

𝑛𝑒𝑡𝑤𝑜𝑟𝑘
) = 1 −max 𝑃𝑔 (𝑥 𝑗

𝑛𝑒𝑡𝑤𝑜𝑟𝑘
)

The lower the maximum probability for the sample, the higher will be the uncertainty score. For example, if
we have three classes [0, 1, 2] and classification probabilities [0.1, 0.1, 0.8], then the corresponding uncertainty
score will be 0.2. Each of these uncertainty scores are then grouped into classes based on the actual label of
the corresponding sample. We then obtain the average uncertainty score for each class. This essentially gives
us weights𝑊 (𝑓 ),𝑊 (𝑔) for each class on classifier 𝑓 and 𝑔. We also compute the F1 scores of each class (i.e.,
𝐹 (𝑓 ) and 𝐹 (𝑔)) as a baseline comparison approach. A final decision is made by seeking the average of𝑊 (𝑓 )
and𝑊 (𝑔). Thus, we are able to find the distribution of weights to follow during collection that𝑊𝑢𝑛𝑐𝑒𝑟 (𝑓 , 𝑔) =
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 [(𝑊 (𝑓 ) +𝑊 (𝑔))/2].

We also test metrics like margin of confidence, ratio of confidence, and entropy [44] to measure the prediction
uncertainty. They present similar performance and for brevity we omit them in the description and evaluations.

4 DATASET AND MODELS
We evaluate our multimodal interaction recognition framework using paired network and video data collected
in the lab. We also collect data from a home environment to evaluate the transferability of our approach. In this
section, we first describe our experimental setup followed by the list of activities for which we collect video and
network data. Then, we describe the video and network-based activity classifiers including the featurization of
video and network data and the associated machine learning model. The purpose of this section is to demonstrate
that our activity recognition method (i.e., data collection, featurization, and modeling) is general and can be
applied in many different ubiquitous computing settings.

4.1 Testbed
4.1.1 IoT Lab. The IoT lab, as depicted in Figure 1a, consists of a variety of devices that are typically found in a
smart home. All IoT devices in the lab are connected using a dedicated WiFi with an upstream connection to the
university network. The traffic from the WiFi router is also mirrored to an NVIDIA Jetson Nano, a single-board
computer. The Jetson Nano is then used to capture and process the network traffic. In addition to network traffic,
we also collect video data for activity using one stationary camera connected to the Jetson Nano. 3 Connecting
the camera to the Jetson Nano allows us to automate data collection during the experiments.

Table 3. Data collection for testbed in IoT Lab.

Device Location Data collected Data format

Router 1 in the lab Network traffic pcap

Stationary Cameras 1 in the lab Video mp4

4.1.2 IoT Devices. To cover a rich variety of devices , the IoT Lab is equipped with 32 IoT devices which are
selected based on their commercial shares. We divide these into six different categories based on their types
of interactions (see Table 4): computer, mobile device, smart appliance, home automation, smart agent, and
surveillance. The first three categories often require physical (e.g., mechanical, touch) engagement to operate
3Videos from an extra camera at a different angle are also collected (but not necessary to our pipeline). They are released along with the
dataset.
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(a) The IoT Lab (b) Sample activity: open close fridge.

Fig. 1. Sample images for the IoT Lab and the data collection.

Table 4. Devices in the IoT Lab.

Category Device Interaction

Computer Personal laptop Physical

Mobile device Android / iOS smartphone Physical

Smart appliance
Samsung smart fridge, General Electric washer
and dryer, Samsung smart TV, Samsung smart stove,
Samsung dishwasher, Bose wireless speaker

Physical, remote

Smart agent Google Home, Amazon Echo Proximate, remote

Home automation Philips light bulbs, TP-link smart plug,
iRobot smart vacuum Proximate, remote

Surveillance Camera Nest camera, Wyze camera, Ring camera Proximate, remote

on those devices, which can be potentially captured by video footage and network traffic simultaneously. The
latter 3 categories, on the contrary, often require non-physical but proximate (i.e., in the same house or room)
interactions. Because of this characteristic, this type of interaction sometimes can not be completely captured by
a fixed-lens camera. A few device categories (e.g., smart appliance) also sometimes involve remote interactions
(e.g. control, schedule outside the room) through smartphone applications, which leave minimal or no traces on
video but relatively greater signal on network. As we will show in the later section, using network data can yield
higher accuracy for such proximate and remote interactions as compared to using video data.

4.1.3 Data Collection and Labeling Pipeline. We develop an easy-to-deploy web-based interface to facilitate the
data collection and labeling process. The interface consists of a home page containing instructions as well as
controls to start or stop the data collection for participants. On the back end, the server implements the data
collection pipeline. The network data is collected using tcpdump, while the video data from the two cameras is
collected using ffmpeg. This pipeline generates labels in real-time during the course of paired video and network
traffic collection, it also automatically logs metadata like participant ID, repetition number, activity, device, and
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timestamp. A deliberate design choice we make is that between two collections, we collect 20 seconds of data as
paddings. This is to accommodate the lead-and-lag phenomenon that we observed in some cases, i.e., the time
asynchronousness between video and network traffic.
A participant who is collecting a new set of data needs to enter a participant ID to retrieve a tailored data

collection script with a set of randomly shuffled activities. The script for each activity contains a list of sub-tasks
that the participant needs to perform to finish the activity. For instance, to collect "open close fridge" (see
Figure 1b), the script pops up like “Walk to the fridge. Open the door. Wait for 2–5 seconds. Close
the door. Walk away.” Note, however, the script is vague about some specifics including the walking direction,
which fridge door to open, with which hand, and the exact waiting time. This leads to a natural variation in the
collected data across multiple runs for the same participant and across participants. After the participant is done
with the demonstration, the participant presses the end button to record the execution time. If a mistake happens,
the participant can record the mistake at any time and the demonstration restarts itself automatically. We discard
the data for such failed transactions. Detailed scripts and encoded naturalness for all the collected activities can
be found in Table 10 (Appendix B.)

4.1.4 Smart Home. To evaluate the transferability of our approach across environments, we also collect videos
and network traces within a residential apartment. The smart home (shown in Figure 8, Appendix B) uses the
same data collection mechanisms for paired data captures. We specifically collect data for an iRobot smart vacuum
from this environment.

4.2 Dataset Descriptions
To the best of our knowledge, we collect the first dataset that explores the paired observations on video and
network traffic (to facilitate future explorations in this direction, we open source our datasets, processed features,
models, and analysis pipeline on https://amir-vidnet.github.io). As shown in Table 5, we first choose four most
representative devices to collect both physical and proximate interactions. From May 2020 to March 2022, 1960
demonstrations are collected in 3 rounds (about 22.14 hours long data, equivalent to 30 hours of human labor
with overhead), with an equal amount of demonstrations across activities for fridge, washer, Alexa and Nestcam.
Each demonstration is 40.67 seconds on average of paired observations, with a minimum of 21 seconds and
maximum of 138 seconds. Note that to accommodate the diversity of user behaviors, the activities are collected
by 7 different users. Camera angles and IoT Lab environment may slightly change from round to round.
We select activities that are important to record the daily usage of each device. For example, on a smart

Samsung fridge, we collect screen interactions, open close fridge, take out and put back items, which help us to
monitor the usage of such device, shedding light on the diet health (food intake) of a user. The “check on device”
activity means that a participant approaches closer to a device to see what’s going on, inspecting whether it
is still working or under errors with no physical touch or mechanical movements on the device. In addition,
each device has an idle state, where there is no human in the IoT Lab. We collect 648 idle traces in total. While
performing per-device classification, we subsample the idle cases to make the amount of data similar to other
classes. This is done to maintain class balance.
In October 2022, an additional round of data (3.14 hours of data, based on six hours of human labor with

overhead) is collected, both in the IoT Lab and the smart home, to test the transferability of approach across
physical environments. The data is collected on a robot vacuum, a unique device that differs from others in its
capacity to move. The robot vacuum can be controlled both by on-surface physical buttons and smartphone apps.
We also consider a new type of activity, i.e., remote interaction through the app, which is not covered by our
previous collections. Each demonstration is on average 37.33 seconds (ranging from 21 to 69 seconds) of paired
observations.
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Table 5. Activity list and dataset description. Some devices have more number of demonstrations than others because the
classification is harder. Some demonstrations are collected in both lab and home environments. The colored IDs are also
referenced in later sections for a clearer presentation.

Device Activity # of Demos Environment ID
All idle 699 / 50 Lab / Home I

check on fridge 144 Lab 𝐹1
screen interaction 145 Lab 𝐹2

Fridge open close fridge 155 Lab 𝐹3
take out item 151 Lab 𝐹4
put back item 149 Lab 𝐹5
check on washer 96 Lab 𝑊1

Washer start washing 113 Lab 𝑊2
end washing 113 Lab 𝑊3
check on Alexa 49 Lab 𝐴1

Alexa ask weather 49 Lab 𝐴2
play music 49 Lab 𝐴3

Nestcam ask time 50 Lab 𝑁1
trigger motion detection 50 Lab 𝑁2
check on vacuum 50 / 50 Lab / Home 𝑉1

Vacuum remote control 50 / 50 Lab / Home 𝑉2
click button 50 / 50 Lab / Home 𝑉3

4.3 Featurization for Video and Network Data
To investigate further on the combinations of video and network modalities, we describe our featurization
approaches that consider the State-Of-The-Art (SOTA) models from both sides. Note that these models are
plug-ins that could be replaced by other advanced models.

4.3.1 Video. According to Section 2.1, video-based activity recognition models often have two approaches: pose
estimations and human action categorization. We mainly focus on human action categorization because of a
more extensive literature base [13, 25, 27, 28, 41] and actual deployments [22].
SlowFast pretrainedmodel.We look into SlowFast networks for activity recognition [28]. The model processes
the videos at a low frame rate to capture spatial semantics, and at a high frame rate to capture fine-grained
motions temporally. We leverage the SlowFast model pre-trained on Kinetics-400 [34] using 8x4 GPUs, which
achieves top-1 accuracy of 76.94% and top-5 accuracy of 92.69% [1]. This SlowFast model has 34.57 Million
parameters, and we take the second to last layer output to create our feature group. The intuition behind this was
that the last few layers of the pre-trained SlowFast model can represent the data in a lower-dimensional latent
space. We tested the impact of different layers of output and found that using the 2nd-5th last layers perform
quite similarly (67 to 73% F1 scores for the 15-class video classifiers) to each other (See Appendix A). We then
select the penultimate layer as it minimizes the number of input features. Based on these samples, we train a
shallower One vs. Rest Logistic Regression classifier to fine-tune the pre-trained features on our datasets.

4.3.2 Network. One major difference between video and network activity recognition is that the latter does not
have pretrained models. Therefore, we search to find the most relevant feature representations to build our model.
The representation of network traffic is still an open problem. Recent years have witnessed some major efforts in
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standardizing machine learning representations for network traffic [33, 63]. nPrint [33] presents a per-packet
representation while NetML [63] creates features based on flow-level summary statistics. We find NetML to be
more suitable and fairly lightweight for this task. Using nPrint, on the other hand, would lead to a dimensionality
explosion, especially given the network data as time series. Thus, we select and modify NetML for this task.
NetML features. We make modifications on the NetML library to extract pcap-level features. We essentially
take all inbound and outbound flows into two groups, each containing statistics features of these aggregated
flows. The features include packet rates, byte rates, distribution of packet sizes, distributions of inter-arrival time,
and the number of flows from both directions. We test multiple classifiers and Random Forest is the best of them.

5 EVALUATION
In this section, we evaluate the effectiveness of combined modalities first by baseline comparisons, given different
evaluation targets. We show that all modal combination methods outperform single modality. The stacking
(the main meta-learning approach) classifier that combines video and network traffic shows more efficiency
than feature fusion (a monolithic architecture) and more adaptiveness than soft voting (another meta-learning
approach). Then, we evaluate the proposed active collection algorithm of AMIR. Given different assumptions on
the classifiers, we seek to understand how well the active collection performs and under what conditions it fails.
Finally, we evaluate the transferability of our approach to a different physical environment.

5.1 Evaluation Settings
Practically, two approaches can be used for real-world activity recognition deployment: a tree of hierarchical
per-device classifiers, or a uniform classifier that involves all devices. We consider both cases.

5.1.1 Tree-based Structure for Per-device Classifiers. A tree-based hierarchy contains a device identifier as well
as several activity classifiers for each device. It provides the flexibility to add, remove, or update each per-device
classifier, but it requires knowledge of device identity. This knowledge, however, is not hard to obtain from
modern routers’ address resolution protocol (ARP) data; it can also be inferred through widely explored device
identification mechanisms using network traffic [5, 43]. We can either use the device-IP (or MAC address) mapping
relationship provided by a homeowner, or we can first isolate the flows by IPs and use a device classifier to help
us to get the device-IP relationship. A per-device network classifier inquires IP-filtered pcap files to have clean
source and destination flows. And a per-device video classifier focuses on per-device activities. We evaluate both
the device classifier and per-device activity classifier to show the effectiveness.

5.1.2 Uniform Classifier for All Devices. Another approach does not require IP or MAC addresses and is easier to
manage, but it loses the flexibility to scale (i.e., each time it scales, it needs an entire retrain on the data). It is
to train on the entire dataset for the task of activity classification. In this case, the biggest difference with the
per-device classifier is that the uniform network classifier does not require IP filters, the pcaps contain all the
traffic from the 5 devices we tested.

5.2 Effectiveness of Combination Methods
To understand the prediction power of meta-learning combination methods compared to single video and network
classifiers, we conduct an accuracy evaluation and cover a variety of classification settings.

5.2.1 Confusion Matrix. We compute the confusion matrix based on 5-fold cross-validations (i.e., training testing
split is 4:1). We test the video classifier using SlowFast [28] intermediate outputs, network classifier using pcap-
level NetML [63] features, and a stacking classifier (a meta-learning approach that uses Random Forest as the
meta-learner) that leverages the prediction probability vectors from both learners. Device classification results
can be found in Appendix A, and we focus on per-device classifiers as well as uniform classifiers in the main text.
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(a) Video classifier.
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(b) Network classifier.
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(c) Stacking classifier.

Fig. 2. Confusion matrices of individual classifiers and stacking classifier for each device. The results shown here mean
accuracy (%). Use Table 5 as the key for activity names. • Fridge, • Washer, • Alexa, • Nestcam, • Vacuum.

As illustrated in Figure 2, we present activity classifications of the fridge (6 classes), washer, Nestcam , Alexa,
and vacuum before and after combinations. Overall, the stacking classifiers improve upon accuracy, precision,
and recalls, compared to the base models. For the washer classifier, "start washing" (𝑊2) and "end washing"
(𝑊3) are harder to tell from the video classifier, because of similar movements. "Idle" (𝐼 ) and "Check on washer"
(𝑊1) are harder to get from network traffic due to no signal on the network. The stacking classifier largely
improves on these two confusion cases. Similarly, the F1 score increases from 69.72% ± 6.31% (95% confidence
interval, video model) and 82.91% ± 3.41% (network model) to 99.54% ± 0.91% (stacking combination) for Alexa
activity classification. For the vacuum, both video and network models have different difficult classes: "check
on vacuum" (𝑉1) and "click button" (𝑉2) are hard to distinguish on the video classifier leading to an overall
accuracy of 72.22% ± 4.48%; for the network classifier (66.95% ± 4.98%), "idle" (𝐼 ) and "check on vacuum" (𝑉1) are
challenging to distinguish due to lack of network data generated during the interactions. The stacking classifier
leads to significant performance improvement (88.19% ± 3.55%) by merging signals from both sources. For the
Nestcam, although the stacking model does not improve much upon an already well-trained network model
(97.41% ± 3.20%), it keeps the same level of performance even when video classifier fails to distinguish 𝑁1 and 𝑁2.

For the 6-class fridge predictors, despite the continued confusions from 𝐹3 to 𝐹5, the meta-learning approach is
able to pick up the best prediction from two individual classifiers. For example, "check on fridge" (𝐹1) and "screen
interaction" (𝐹2) share similar characteristics on video footage, but in 𝐹1 a motion sensor triggers the fridge to
wake up and send network traffic, which differs from the 𝐹2 traffic patterns. "Open close fridge" (𝐹3), "take out
item"(𝐹4), and "put back item"(𝐹5) are especially hard to distinguish and the network model nearly makes random
guesses among them. Thus, the failure in the combination roots in the inability to classify from base learners. So
we also test the 4-class fridge classifier and 15-class all-device classifier without 𝐹4 and 𝐹5 in later comparisons.

In Figure 3, we test the uniform classifier with 15 classes. The average F1 score climbs up from 69.58% ±2.56%
using only video (and 81.48% ±2.67% using only network) to 88.90% ±1.36% using stacking. Also, in the stacking
confusion matrix, fewer mistakes are made across devices. The network classifier, on the contrary, has 43% of
𝐴1 mistaken as 𝐹1. We also find that 𝑉1 (check on vacuum) and 𝑉3 (click button) get confused with each other
across all models, although there is a slight improvement in the stacking classifier. A potential reason is that
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(a) Video classifier.
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(b) Network classifier.
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(c) Stacking classifier.

Fig. 3. Confusion matrices of individual classifiers and stacking classifier for 15-class uniform classification. Results shown
here mean accuracy (%). Use Table 5 as key for names.

both activities have reduced video and network signals in this all-device uniform classifier. The video for both
activities is quite similar, consisting of a participant walking in front of the vacuum and reaching down to it. As
per network data for these activities, we find that clicking buttons only generates 4 to 6 packets, which is likely
harder to distinguish when traffic from other devices is also considered in the uniform classifiers.

5.2.2 Baseline Comparisons. We further test the effectiveness of stacking by comparing it with two other
baselines, namely feature combination and soft voting. Feature combination [30] has a monolithic architecture
that essentially requires every input sample to be paired observation. It concatenates feature vectors for both
video and network to train a model. Soft voting [16] is another meta-learning approach, which can be regarded as
a special case of stacking. It does not need any paired observation as it simply uses the average of the probability
scores from the base models.
We not only test the device classification problem but also the per-device activity classifier and the uniform

classifier. Due to the similarity among 𝐹3, 𝐹4, and 𝐹5, we consider 4 classes for fridge and 15 classes for uniform
activity classifiers. Because the vacuum activities are collected 7 months away from the other devices, we also
report the results for a 12-class uniform classifier without vacuum. From Figure 4, video and network classifiers
have different prediction power for different tasks. Video model has a higher F1 score for washer and vacuum,
similar performance for 6-class fridge, and lower F1-score for the device, 4-class fridge, Alexa, Nestcam, and
uniform classifiers, compared to network models. As expected, combining two data sources outperforms either
of the single-modality classifiers. Within combination approaches, we observe that feature combination has an
accuracy similar to the meta-learning approaches, but it also has the highest training overhead.
We next look into the differences between soft voting and stacking in greater detail.

5.2.3 Soft Voting vs. Stacking. Figure 4 shows that both stacking and soft-voting have statistical similarities in
performance in most cases. Only for the Alexa activity classifier, stacking is significantly better than soft voting.
The biggest advantage of soft voting is that it does not require paired observations, however, it suffers from some
major drawbacks. (1) Soft voting highly depends on the capacity of base learners (single-modality models). As
shown in Figure 5, the original model (Random Forest) for 15-class uniform classification is on the left. After
we change the network model to a simple One vs. Rest Gaussian Process (OvRGP), the soft voting algorithm is
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Fig. 5. Stacking vs Soft voting under two different network models. The video model is fixed to be One Vs Rest Logistic
regression. Feature combination is using Random Forest.

instantly influenced, showing a great drop -17.62% in the accuracy. But the stacking classifier is not as affected
(-9.46%). (2) Soft voting has lower adaptability to change in physical environments. Here, we assume that we train
the base learners and test the algorithms in different environments. Active collection of paired examples from
the new environment in stacking ensures the existing models are fine-tuned in a different environment. This
is because the statistical characteristics of the newly collected sample are likely closer to the testing set. With
active collections, this can be captured in the stacking meta-learner training process. However, a soft voter will
make decisions based on the voting heuristics and predict biased results. As we discuss later in Section 5.4, when
models trained in the lab are tested at home, the soft voting mechanism fails to remain effective, with F1-score
dropping from 85% to 41%. The stacking classifier, however, shows a more consistent performance with only a
6% drop in accuracy. (3) Moreover, theoretically, stacking is a direct generalization of soft-voting. In order to
achieve higher flexibility and effectiveness, we believe stacking is a better meta-learning approach for such tasks.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 21. Publication date: March 2023.



21:16 • Liu, et al.

0 50 100 150 200 250
Number of paired collections

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Prioritization approach
Uncertainty Score
F1 Score
Random

(a) 12-class classification.
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(b) 15-class classification

Fig. 6. The F1 score (with 95% confidence interval as error bars) changes when the number of paired observations varies for
12-class and 15-class uniform classifiers.

5.3 Effectiveness of Active Collection Algorithm in AMIR
Now that we have demonstrated that “combination is an effective approach” and “stacking meta-learner does not
require all paired observations as the feature combination, and is more robust than soft voting meta-learner” we
seek to optimize the stacking effectiveness, i.e., to evaluate the active paired observation collection algorithm we
proposed in Section 3.3. More specifically, we analyze the amount of reductions and final accuracy on paired
collections using uncertainty distribution prioritization compared to F1 and random prioritization (standard
stacking).
The idea behind paired observation prioritization is to "cherry-pick" the most informative group of data for

collection and training the stacking meta-learner. By this intentionally "biased" collection method, the saturation
of F1 score is achieved earlier and may potentially end at a higher level. We use the same train-test split approach
as a regular stacking method, and we use 5-fold cross-validation on the training set to derive the uncertainty and
F1 class distributions. Then additional data is collected. The stacking classifier (Random Forest) is unchanged and
is same as in random prioritization.

As shown in Figure. 6, we present two uniform classification tasks with different complexity levels. Although all
three methods eventually achieve saturation of F1, the overall trend is that the prioritization by uncertainty-based
class distribution is the fastest to saturate (70 and 170 samples, respectively for 12-class and 15-class problem) and
has the highest F1 score (90.15% ± 0.93% and 86.95% ± 2.08%). In comparison, random prioritization with equal
class distributions requires 120 (∼2 hours of human labor) and 50 (∼50 minutes of human labor) more samples for
saturation. Meanwhile, uncertainty prioritization achieves higher final F1 scores than the other two methods by
3.30% to 4.88%. Also, from the comparison between 12-class and 15-class problems, the more complex the task,
the more samples are needed for saturation.
In Table 6, the F1 score changes are illustrated for each per-device classifier. Uncertainty prioritization is the

best approach for all devices except for the fridge. The uncertainty approach needs only half of the samples
to achieve the optimal F1 score for the washer, Alexa, and Nestcam. Prioritization by F1 score is an intuitive
baseline, but the effectiveness is not as good. The reason behind it is that over-sampling the accurate classes does
not help with faster decision making on inaccurate classes. For example, for the Alexa classifier in Figure 2, the
video model is accurate in distinguishing "Idle" (𝐼 ) and the rest, while the network model is good at telling 𝐴2
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Table 6. The F1 score changes when the number of paired observations varies for the per-device classifier. Uncer. denotes
prioritization by uncertainty scores for each class. The sample numbers of the earliest saturation and corresponding methods
are shaded for each classifier. We also bold the best F1 scores across 3 prioritization methods for each number of samples.

#Sample Fridge (4 classes) Washer Alexa Nestcam

Uncer. F1 Random Uncer. F1 Random Uncer. F1 Random Uncer. F1 Random

10 0.536 0.867 0.899 0.556 0.602 0.600 0.642 0.791 0.491 0.956 0.816 0.547
20 0.885 0.939 0.884 0.921 0.879 0.764 0.903 0.821 0.777 0.979 0.881 0.970
30 0.919 0.941 0.876 0.921 0.880 0.893 0.971 0.903 0.928 0.979 0.965 0.972
40 0.926 0.940 0.942 0.921 0.909 0.900 0.995 0.944 0.931 0.979 0.974 0.979
50 0.939 0.940 0.944 0.917 0.904 0.908 1.000 0.994 0.931 0.979 0.978 0.969

from 𝐴3. This near-complimentary case makes the collection of 𝐴1 tricky. The uncertainty approach prioritizes
𝐴1’s collection while using F1-score lowers the priority. Thus, it is faster to find the decision boundary using the
former method.
Note that for each class, the uncertainty approach does require a relatively accurate prediction from at least

one base learner. We do not observe the same effectiveness of uncertainty prioritization on the 6-class fridge
classifier, partly because both individual classifiers are uncertain and inaccurate on 𝐹3, 𝐹4, and 𝐹5. Prioritization
based on uncertainty distribution biases the classifier towards classes that do not have reliable information, which
breaks the decision boundary searching process. We will further explore the best approach that considers both
uncertainty and accuracy in future work.

5.4 Transferability across Environments
We now test the transferability of AMIR across physical environments. We specifically analyze the transferability
of different components of the AMIR framework including the base models, combination algorithms, and the
active collection strategy. We use the data collected on the iRobot vacuum in the IoT lab and from a smart
home for this analysis. Our results show that (1) network models are more robust to environmental changes
compared to video; (2) stacking with some paired examples shows adaptive capacities and performs the best
across environments; (3) the uncertainty-based prioritization of AMIR helps to derive a meta-learner when
environments are different.

5.4.1 Model Transferability. We begin by calculating the F1 scores of the base and combination models under the
two environments. As shown in Table 7, when the training and testing datasets are from the same environment,
both the video and network classifiers achieve good performance above 70%. The stacking classifiers perform better
because it combines two complementary modalities together with some paired examples to train meta-learners,
achieving an F1-score of 89% in the lab and 98% at home.
We now consider classifier accuracy when the training data is collected from one environment and the test

data is collected from the other. We notice a drastic performance drop (50% and 65% of F1 score decreases) in the
video classifier. The reason is that video classifiers are sensitive to the physical environment including factors
such as the home layout, lighting, different objects, and camera angle. Variations in these factors lead to a drop in
model accuracy. On the contrary, network traffic traces are largely independent of the physical environment, and
we only observe slight drops (6% and 5%) in a completely different environment.

Within the combination models, soft voting also reports a drop in accuracy. This is because it only averages
the output probability vectors of two base learners, with no paired examples. So it is not able to adapt to the new
environment, getting losses of 44% (trained in the lab, tested at home) and 38% (trained at home, tested in the lab)
in the F1 score. In contrast, stacking is able to adapt to the new environment as it uses a few paired examples to
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Table 7. The F1 score changes when the training and testing sets are different. Soft voting does not use paired samples, but
Stacking (randomly prioritized) uses some paired samples in the testing environment.

Dataset F1 of Classifiers

Base Training Testing Video Network Voting Stacking

In-lab In-lab 0.74 0.74 0.85 0.89
At-home 0.24 0.68 0.41 0.83

At-home At-home 0.83 0.70 0.95 0.98
In-lab 0.18 0.65 0.57 0.90

Table 8. The F1 score changes when the number of paired observations varies for the vacuum classifier across environments.
In the parenthesis, the environment before the arrow provides a training set for base learners and weights for prioritization.
And the environment after the arrow forms the training set of the meta-learner, as well as the test set.

#Sample Vacuum (Lab->Lab) Vacuum (Lab->Home)

Uncertainty F1 Random Uncertainty F1 Random

10 0.687 0.698 0.555 0.501 0.494 0.444
20 0.847 0.887 0.795 0.673 0.662 0.524
30 0.863 0.896 0.851 0.739 0.755 0.770
40 0.876 0.891 0.861 0.812 0.804 0.786
50 0.899 0.891 0.890 0.822 0.798 0.813
120 0.901 0.874 0.896 0.877 0.834 0.831

train the meta-learners. It outperforms both the base learners as well as soft-voting reporting an F1-score of 83%
and 90% in the lab and at home, respectively; a decrease of 5% and 8% compared to testing in the same setting.

5.4.2 Transferability of Active Data Collection. In Section 5.3, AMIR is able to effectively reduce the amount of
samples being used to train a meta-learner, while improving the performance. Here we evaluate the transferability
of the approach, i.e., whether the weights for prioritization obtained from one environment are transferable to a
new setting.
In Table 8, after training base learners from one setting, we obtain the weights of prioritization in the same

environment and use them to train a meta-learner. In the Lab->Lab case, we derive the weights from the base
learners trained in lab, and the meta-learner is also trained and tested in the lab. Compared to the random
prioritization approach, the uncertainty-guided method is able to gain about 1% of more average F1 scores and
saturates much faster, i.e., with 40% fewer (from 70 to 50) paired samples.

We now consider the more practical and operationally valuable use case of our framework, where we use the
prioritization weights derived from the base models trained in one environment to prioritize paired data collection
in a new environment. Thus, we test whether these weights can still be transferred to improve meta-learning.
As shown in the Lab->Home case in Table 8, we find that using the weights derived from the lab environment,
the uncertainty-based prioritization is able to decrease the number of paired samples required for saturation
of F1-score from 150 (random selection) to 120 pairs. It also reaches an F1 score of 87.7%, which is 4.6% higher
than conducting random selections. Note that the number of paired samples needed to achieve saturation in
this case (120) is significantly higher than that within the same environment (50). This indicates that training a
meta-learner in a new environment is relatively more challenging than in the same setting.
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6 DISCUSSION AND FUTURE WORK

6.1 Limitations
6.1.1 Applicable Activities. Our approach is limited to interactions with an Internet-connected entity (e.g.,
device, infrastructure, etc.), generating both physical signatures (video) and network footprints. For example, our
augmentation framework applies to “opening and closing a smart fridge”, but not “walking on the open ground”.
However, “walking under a motion-sensing camera” is within our scope because it captures changes from the
video and triggers an upload on network traffic for motion analytics. We argue that the scope of these interactions
is only going to increase in the future, as more and more devices are becoming connected to the Internet.

6.1.2 Guided vs. Natural Activities. One may argue that our data is collected through guided activities and
does not cover the same degree of variation as natural activities in the real world. However, collecting data
corresponding to natural activities is challenging as they are more spontaneous and sparse, and have significant
privacy concerns and labeling efforts. Moreover, our data, although collected through guided activities, exhibits
some degree of variation as it spans 7 users that collect data over multiple rounds and over different times of the
day. The (deliberate) vagueness in the instructions also leads to some variations. For instance, the script to “take
out an item from the fridge” does not specify the walking direction (left or right), the hand, the fridge door or rack
(upper or bottom), and the specific item. Similar variations exist for other activities as described in Appendix B.
Finally, we argue that the main focus of the paper (i.e., AMIR) is independent of the labeling process and whether
the activities are natural or instructed.

6.1.3 Limitations of Network Traffic. Our evaluation shows that for a network-assisted approach to be effective,
the network signal should be fairly unique. For instance, it was challenging to distinguish between open-close,
take-out, and put-back activities in the case of a smart refrigerator in Section 5.2. There can be other limitations
that arise due to practical considerations including the vantage point location, firmware updates, network
conditions, and device brands. For instance, device or firmware changes can lead to changes in the network
traffic patterns, and thus may require re-training of the base model. Similarly, different network conditions can
affect model accuracy. For example, in an extremely throughput-constrained environment, packet losses and
re-transmissions may be high or a connection may terminate, which can in turn impact the model accuracy. In
future work, we will analyze the robustness of network models to such changes.

6.1.4 Transferability. The design of AMIR assumes the same set of labels/activities across all environments and
modalities. However, this assumption may not hold true when dealing with different devices and activities in
different settings. For instance, the lab classifiers may include activities from a smart fridge, Nestcam, and Alexa,
but a home environment may have a subset of devices and associated activities (e.g., a smart fridge and Alexa).
While a meta-learner can be trained on new labels to transfer the knowledge of old models, the uncertainty
weights from old labels cannot be trivially transferred. A possible solution is to use tree-based per-device classifiers
that can be easily replaced in a plug-and-play fashion. These classifiers can then be retrained for specific devices
and associated activities to derive the new uncertainty weights. In the example provided, only the Alexa and
fridge models would need to be retrained at the lab for alignment. Besides, our evaluation of transferability is
limited using data from two physical environments for one device only. We find that although the uncertainty
weights can transfer between these two environments, the amount of paired demonstrations needed increases.
Further, not until real collection is done do we know the optimal number of new demonstrations to saturate
accuracy. For future work, we will investigate the transferability of AMIR in more environments on more devices,
under the assumption that labels across environments might change. The latter calls for new algorithm designs
(e.g., estimate label similarities for weight alignment) for uncertainty weights to be transferred.
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6.2 Privacy Concerns
Activity recognition has associated privacy concerns, especially when using video data. Related work has
proposed a privacy-preserving video activity recognition system including downgrading video quality [14] and
edge computing for processing data locally [29]. All of our models have been tested using the Jetson Nano,
indicating the framework is lightweight enough and amenable to edge computing using an inexpensive Single
Board Computer like Jetson Nano or Raspberry Pi.
The network data also possess additional privacy concerns with the possibility of an in-network adversary

or consumer Internet Service Provider using the network models to infer activity. A possible solution is to use
techniques like data padding [6]. However, the location of data obfuscation is critical. For instance, if data padding
happens on the device itself, the data no longer remains usable for our framework. A safer approach is to perform
padding at an aggregation point upstream (e.g., router) for improved user privacy. This requires more in-depth
discussion and is out of the scope of this paper.

6.3 Alternate Multimodal Learning Techniques
In this paper, we explore two classic ensemble learning methods, namely soft voting and stacking. However,
there are other methods useful in this context including Bayesian model averaging and variants of stacking. For
instance, we could train the stacking-based meta-learner with base features in addition to model output. Similarly,
there could be other learning frameworks that require no or even fewer paired observations. A simple combination
framework could be to use either a video model or a network model based on prior knowledge about the accuracy
of the model under different activities. Similarly, there can be other active learning techniques that can be used
to train a meta-learner with as few samples as possible. We tried a few other metrics including a combination of
uncertainty and F1 score but that did not improve accuracy. We plan to explore these other techniques in future
work, looking at meta-learning approaches in addition to stacking (e.g., hierarchical multi-modal classification)

6.4 Other Modalities
In addition to network and video data there are other data sources present in an in-home setting such as
smartphones, wearable sensors, and audio. Our results, so far, indicate that combining data at the model level can
yield similar accuracy to the feature-level combination. This is likely due to the complementary nature of video
and network data sources with one containing no information about the other. This is an important insight and
can be potentially used for other data sources as well. For instance, audio, motion sensors, and wireless signals
are likely to be complementary to both video and network. If true (needs validating), it is easy to extend our
framework. One can simply train a model using sensor data alone and then combine the model-level outputs of
more data sources using a meta-learner.

7 CONCLUSION
This paper advocates for the synthesis of video and network data for improved accurate in-home activity
recognition. Our evaluation shows that using both network and video data results in higher accuracy compared
to using video and network data alone. Furthermore, our active learning approach significantly reduces the
paired network and video observations needed for training the meta-learner. Our results indicate that there is a
huge potential in synthesizing complementary data sources to improve elder care, safety, and automation for
connected homes. In our future work, we plan to augment additional data modalities (e.g., audio, motion sensors,
wireless signals.) with network and video data. AMIR can also be extended to other connected environments like
smart buildings and smart factories, exploring meta-learning approaches in addition to stacking (e.g., hierarchical
multi-modal classification). Finally, we plan to explore privacy and security aspects of our techniques, identifying
and mitigating adversarial threats and privacy violations.
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A ADDITIONAL EXPERIMENTS

Confusion Matrices for device classifier. The device-IP mapping relationship can either be obtained from
user inputs or automatic collection of an in-home router, or we can use a particular device classifier based on our
collection. We use a 5-fold cross validation on the dataset to obtain the confusion matrices. In Figure 7, confusion
matrix of the video classifier shows worse prediction power and is bad at classifying devices with proximate
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interactions (i.e., interactions that happened at surrounding with no physical touch or mechanical movements).
The network classifier, however, demonstrates strong inference capacity on all devices. By combining them
together using a meta-learning stacking classifier (Random Forest), 2% of accuracy increase is observed on 𝐹

(Samsung smart fridge).
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(a) Video classifier.
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(c) Stacking classifier.

Fig. 7. Confusion matrices of different classifiers for 5-device classification. Results shown here means accuracy (%). Results
for each device might not add up to 100% because of rounding on the number. Use Table 5 as key for names and devices.

Choice of features.We chose the latter (2nd to last) layer outputs of the SlowFast model because they in general
convey the learned derivation of the inputs. In order to test out the impact of different layers of outputs, we also
show the results in Sec 6.2 using the 3rd, 4th, and 5th to last layer and they are similarly good 67 to 73% F1 scores
for the 15-class video classifiers.

Table 9. The performance of 15-class video classifiers (OneVsRest Logistic regression) when we select different layer outputs
from SlowFast models as features.

Layer name Pooling Linear Dropout AvgPool3d

Layer to last 2nd 3rd 4th 5th
Macro F1 0.67 0.68 0.73 0.73
Weighted F1 0.82 0.82 0.85 0.85

B DATA COLLECTION

Activity scripts. In Table 10, we list the comprehensive scripts of activities and all devices. In this table, we
verbosely note down the degrees of freedom for these tasks, which shows the variations of the dataset and the
spontaneous choices made by the users.
Real-world smart home. Figure 8a shows our home environment for data collection. Apart from our target
device (robot vacuum), there are a number of irrelevant objects such as the TV and video game consoles in a
real-world environment. Figure 8b shows a sample activity where the user clicks a button on the robot vacuum.
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Table 10. Activity list and corresponding scripts and degrees of freedom.

Device Activity Script Degree of freedom
All idle Do nothing. Make sure no user is in the

camera.
light condition, hour of day

check on fridge Walk to the fridge. Do nothing for 2-5
seconds. Walk away.

Enter and leave direction, walking speed,
waiting time

screen interaction Walk to the fridge. Tap the screen on
the right. Interact with it for 5 seconds
(e.g., browse recipe, watch video, say hey
bixby <some command>). Walk away.

Enter and leave direction, walking speed,
interaction time, interaction type, pre-
ferred hand

Fridge open close fridge Walk to the fridge. Open the door. Wait
for 2-5 seconds. Close the door. Walk
away.

Enter and leave direction, walking speed,
waiting time, preferred hand(s), fridge
door(s)

take out item Walk to the fridge. Open the door. Take
an item out. Close the door. Walk away
with the item.

Enter and leave direction, walking speed,
waiting time, preferred hand(s), fridge
door(s), item

put back item Pick an item. Walk to the fridge. Open
the door. Put the item in the refrigerator.
Close the door. Walk away.

Enter and leave direction, walking speed,
waiting time, preferred hand(s), fridge
door(s), item

check on washer Walk to the fridge. Do nothing for 2-5
seconds. Walk away.

Enter and leave direction, walking speed,
waiting time

Washer start washing Walk to the washer. Turn on washer, put
in clothes, close lid, start washing, walk
away from washer.

Enter and leave direction, walking speed,
waiting time, preferred hand(s), cloth(es)

end washing Walk to the washer. End washing, open
lid, get clothes out, turn washer off.Walk
away.

Enter and leave direction, walking speed,
waiting time, preferred hand(s), cloth(es)

check on Alexa Walk to the Echo. Do nothing for 2-5
seconds. Walk away.

Enter and leave direction, walking speed,
waiting time

Alexa ask weather Walk to the Echo. Say ’Alexa, what is the
weather’. Walk away.

Enter and leave direction, walking speed,
waiting time, voice tone, weather re-
sponse

play music Walk to the Echo. Say ’Alexa, play some
music’. Let it play for a while and say
’Alexa, stop.’ Walk away.

Enter and leave direction, walking speed,
waiting time, voice tone, music

Nestcam ask time Walk to the Nest Camera. Say ’OK
Google, what’s the time?’. Walk away.

Enter and leave direction, walking speed,
waiting time, voice tone, time response

trigger motion detection Walk towards the Nest Camera. Do noth-
ing for 2-5 seconds. Walk out of the view.

Enter and leave direction, walking speed,
waiting time

check on vacuum Walk to the Vacuum. Check its status.
Wait for 2-5 seconds. Walk away.

Enter and leave direction, walking speed,
waiting time

Vacuum remote control Begin collection. Start vacuuming on
App. Wait for 2-5 seconds. Pause vac-
uuming on App. Stop collection.

Enter and leave direction, walking speed,
waiting time, inside/outside LAN

click button Walk to the Vacuum. Click a button on
robot vacuum. Walk away.

Enter and leave direction, walking speed,
waiting time, preferred hand(s), button
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(a) The home environment (b) Sample activity: click a button on the robot vacuum.

Fig. 8. Sample images for the home environment and the data collection.
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